If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+9z=10
We move all terms to the left:
z^2+9z-(10)=0
a = 1; b = 9; c = -10;
Δ = b2-4ac
Δ = 92-4·1·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-11}{2*1}=\frac{-20}{2} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+11}{2*1}=\frac{2}{2} =1 $
| 0.5x=3/2x+6 | | u/4+10=36 | | 80=3x+53 | | -82a+32=72 | | -1x-7=28 | | 10v-10v+4v+4v-3v=10 | | X^2+x^2=1012.5 | | -p-6-2=-4 | | -2x^2-18x-36=0 | | 56-s=22 | | 0=15n-65 | | 7.9/12=4.2/x | | 7(-5x-2)-7=-35x-21 | | 1/2=-6x+2 | | 7n-6n+4n=20 | | 120+x+2x+180=180 | | 1/2(8y+10)=25 | | -1(5-4x)=5 | | 3000=750+50x | | 4={1}{8}(3x+16) | | 3j+25=-50 | | 5g/6+g/2-1/3-3/4=1 | | 11p+2p+2p-7p=8 | | 56x6=336 | | 16+4x-9+1x=72 | | 5=5+7n+n | | 1.5(8x+10)=0.6(10x-5) | | g+(1/3)=(-1/8) | | –4−18v−10=–19v−20 | | 220=40+30x | | 98+x=196 | | g+1/3=-1/8 |